protocol-cryopreservation-BY-2-en-1.3

Cryopreservation of tobacco BY-2 suspension cell cultures¹

Version 1.3 (2022.9.12)

¹This protocol was translated from the Japanese version that had been used in RIKEN BRC Technical Training Course.

Change history

Version 1.0 (2018.11.30)

• Translated from Japanese version.

Version 1.1 (2019.9.3)

- Added subsection 1.1 Plant cell culture in section 1 Materials.
- modified Appendix A.
- Updated link url.

Version 1.2 (2022.8.1)

• Changed E-mail address plant@brc.riken.jp to plant.brc@riken.jp.

Version 1.3 (2022.9.12)

- · Corrected footnotes.
- Replaced Wako Pure Chemical Industries with FUJIFILM Wako Pure Chemical Corporation and TOMY Seiko with TOMY Digital Biology Co., Ltd.
- Added equipment to 1.3 Equipment section and sorted the list.
- Replaced 25°C with room temperature in 2.1 Cryopreservation 13.
- Deleted Appendix A "Cryopreservation of Arabidopsis T87 suspension cell cultures."
- Corrected typographical errors and wordings.

Experimental Plant Division RIKEN BioResource Research Center (BRC) Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074 Japan FAX: +81 29 836 9053 E-mail: <u>plant.brc@riken.jp</u> <u>https://epd.brc.riken.jp/en/</u>

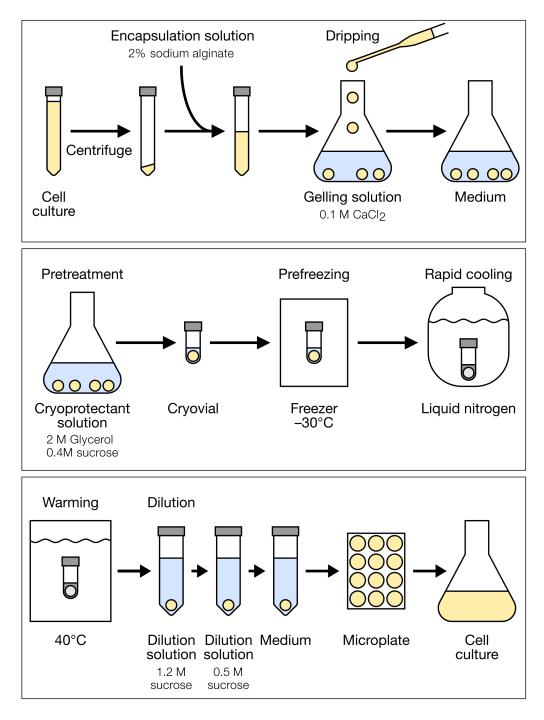


Figure 1: Schematic diagram of cryopreservation procedure

1 Materials

1.1 Plant cell culture

• Tobacco BY-2 suspension cell cultures², after 3 days of subculturing³

1.2 Chemicals

Cryopreservation

 A) Culture medium: modified Linsmaier and Skoog (mLS) medium, 0.2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), pH 5.8⁴

MS Plant Salt Mixture	1 bag
Sucrose	30 g
BY2_P	2.5 mL
LS_VT_modified	2.5 mL
2,4-D (0.2 mg/mL)	1 mL
	1 L

Adjust pH to 5.8, sterilize by autoclave.

B) Encapsulation solution: medium containing 2% (w/v) sodium alginate

Culture medium ⁵	100 mL
Sodium alginate ⁶	2 g

Dissolve by stirring under heating at about 60°C. Sterilize by autoclave.

C) 3 M CaCl₂ solution

 $CaCl_2 \cdot H_2O$ 22.1 g

50 mL

Sterilize by filtration or autoclave.

²RIKEN BRC plant cell line documentation (rpc00001; <u>https://plant.rtc.riken.jp/resource/cell_line/web_docu</u> ments/cell_lines/rpc00001.html)

³Cultured cells are taken from the exponential growth phase. The cells are small and have rich cytoplasm with small vacuoles.

⁴RIKEN BRC plant cell line documentation (medium no. 1; <u>https://plant.rtc.riken.jp/resource/cell_line/web_</u> documents/media/medium_1.html)

⁵Sodium alginate is usually dissolve in calcium-free medium. We were able to dissolve sodium alginate in common mLS medium, because the calcium chloride concentration of the medium (3 mM) does not induce gelation of alginate.

⁶Sodium alginate 300–400 (No. 190-09991, FUJIFILM Wako Pure Chemical Corporation)

D) Gelling solution: medium containing 0.1 M CaCl₂

Culture medium, sterilized	60 mL
3 M CaCl ₂ solution, sterilized	2 mL

E) $2 \times$ Medium: double-strength mLS medium, not containing sucrose

Murashige and Skoog Salt Mixture	1 bag
BY2_P	2.5 mL
LS_VT_modified	2.5 mL
2,4-D (0.2 mg/mL)	1 mL
	500 mL

F) Cryoprotectant solution: medium containing 2 M glycerol and 0.4 M sucrose

2× Medium	150 mL
Glycerol	55.3 g
Sucrose	41.1 g
	300 mL

Adjust pH to 5.8, sterilize by autoclave.

Regrowth

G) Dilution solution (1.2 M): medium containing 1.2 M sucrose

2× Medium	150 mL
Sucrose	123.2 g

300 mL

Adjust pH to 5.8, sterilize by autoclave.

H) Dilution solution (0.5 M): medium containing 0.5 M sucrose

$2 \times Medium$	150 mL
Sucrose	51.3 g

300 mL

Adjust pH to 5.8, sterilize by autoclave.

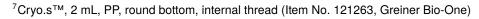
Evaluation of cell viability

I) 10 mg mL⁻¹ Evans blue solution

100 mg

10 mL

J) Staining solution: medium containing 1 mg mL $^{-1}$ Evans blue


1.3 Equipment

Cryopreservation

- Microscope
- Conical tube, 15 mL
- Low-speed centrifuge
- Pipette
- Erlenmeyer flask, 200 mL
- Pasteur pipette
- Shaker
- Cryovial, 2.0 mL, round bottom⁷
- Forceps
- Vial rack⁸ (Figure 2)
- Laboratory freezer, -30°C
- · Cane for cryovials
- Dewar flask

Regrowth

- · Conical tube, 50 mL
- Water bath
- Shaker
- Pipette
- Forceps
- Cell culture plate, 12 well⁹
- Micro spatula

⁶Do not use a rack that cover the bottom of the cryovials.

⁹Falcon[®] 12 well clear flat bottom not treated multiwell cell culture plate (product #351143, Corning)

Figure 2: 1.5 (2) mL tube rack TR-4002 (Micro tube mixer MT-400 supplied rack; TOMY Digital Biology Co., Ltd.)

Evaluation of cell viability

- Surgical blade
- Pipette
- Cell culture plate, 12 well
- Forceps
- Microscope slide
- Cover slip
- Microscope

2 Methods

2.1 Cryopreservation

- 1. Check physiological condition of cultured cells by observing them under a microscope. $^{10}\,$
- 2. Transfer suspension cell culture into a 15-mL conical tube.
- 3. Centrifuge the tube at 100 $\times g$ for 5 min.
- 4. Check volume of the pelleted cells and remove the supernatant with a pipette.
- 5. Gently suspend the pelleted cells in 3–4 volume of encapsulation solution.
- 6. Pour 60 mL of gelling solution to a 200-mL Erlenmeyer flask.
- 7. Drip the mixture of cells and encapsulation solution into the gelling solution with a Pasteur pipette¹¹.¹²
- 8. Keep the beads formed from the encapsulated cells in the gelling solution with gentle shaking for 5–10 min.
- 9. Remove the gelling solution with a pipette.
- 10. Wash the beads with 10 mL of culture medium: Add culture medium, gently swirl the Erlenmeyer flask, and remove the culture medium with a pipette.
- 11. Incubate the beads in 50 mL of culture medium for 10–20 min.
- 12. Remove the culture medium and wash the beads with 10 mL of cryoprotectant solution.

¹⁰Good physiological condition of the cultured cells is essential for successful cryopreservation.

¹¹Either Gilson PIPETMAN P-1000 or disposable 2-mL pipette can be used instead of a Pasteur pipette.

¹²The alginate gel beads about 4 mm in diameter (about 30 μ L) are formed immediately after dripping.

- 13. Incubate the beads in 50 mL¹³ of cryoprotectant solution at room temperature for 60 min with gentle shaking (pretreatment¹⁴).
- 14. Pour 300 μ L of the cryoprotectant solution to a 2-mL cryovial.
- 15. Transfer three beads into each cryovial with forceps.¹⁵
- 16. Place the cryovials in a rack and store them in a laboratory freezer at -30°C for 2 h (slow prefreezing¹⁶).¹⁷
- 17. After removing the cryovials from the freezer, immediately set the cryovials to cryovial canes and immerse it in liquid nitrogen (rapid cooling¹⁸).
- 18. Store the cryovials in vapor phase of a liquid nitrogen storage tank.¹⁹

2.2 Regrowth

- 1. Pour 30 mL of dilution solution (1.2 M) to a 50-mL conical tube.
- 2. Warm each cryovial in a water bath at 40°C with gentle agitation.²⁰
- 3. After thawing, immediately remove the cryovials from the bath.
- 4. Transfer the three beads and cryoprotectant solution in the conical tube containing dilution solution (1.2 M).²¹
- 5. Set the conical tube horizontally on a shaker and incubate the beads at room temperature for 15 min with gentle shaking.
- Replace the dilution solution (1.2 M) with 30 mL of dilution solution (0.5 M): Remove the dilution solution (1.2 M) with a pipette and add dilution solution (0.5 M) to the conical tube.
- 7. Incubate the beads for 15 min with gentle shaking.

- ¹⁸The dehydrated cells are vitrified by rapid cooling in liquid nitrogen. The vitrified cells can be preserved safely at the temperature of liquid nitrogen (-196°C) for an indefinite length of time.
- ¹⁹The viability of cells is checked using one cryovial before long-term storage.

¹³The beads are suspended in at least 1 mL of cryoprotectant solution per bead.

¹⁴The cryoprotectant pretreatment promotes tolerance of cells to cooling to -30°C and subsequent exposure to liquid nitrogen.

¹⁵Total volume of the sample is about 400 μ L.

¹⁶The slow prefreezing causes freeze-induced dehydration of cells.

¹⁷The slow prefreezing can be achieved with simple cooling in a laboratory freezer rather than with controlledrate cooling in a programmable freezer. The cooling rate may be affected by some environmental factors, e.g., sample volume, cooling position in a freezer, and space between the cryovials.

²⁰In order to avoid recrystallization of the vitrified cells, it is necessary to warm the cryovial rapidly. Also it is important not to overheat.

²¹The cryoprotectant solution is stepwisely diluted to prevent the damage caused by rapid change in osmotic pressure.

- 8. Replace the dilution solution (0.5 M) with 30 mL of culture medium and incubate the beads for 15 min with gentle shaking.
- 9. Suspend three beads in 3 mL of fresh culture medium in each well of a 12-well cell culture plate.
- 10. Culture the beads at 27°C in the dark for 3 days with shaking at 130 rpm.
- 11. Gently crush the beads with a micro spatula to release the encapsulated cells into the culture medium.²²
- 12. Culture the cell suspension for an additional 4 days.
- 13. Transfer the cell suspension to 95 mL of fresh culture medium in a 300-mL Erlenmeyer flask.

2.3 Evaluation of cell viability

- 1. Cut the bead into two to four pieces.²³
- 2. Soak the pieces in 1 mL of Evans blue staining solution in each well of a 12-well cell culture plate for 20 min.
- 3. Transfer the pieces to 1 mL of culture medium and incubate them for 20 min.
- 4. Place one piece of the bead on a microscope slide and gently crush with a cover slip.
- 5. Count living and died cells, respectively.²⁴

²²The beads must be cultured until the embedded cells proliferate vigorously.

²³The cell viability is determined after 1 day of culture, because we could not evaluate the viability of cells that were still recovering from cryopreservation immediately after re-warming.

²⁴Died cells are stained blue.

3 References

- Kobayashi T, Niino T, Kobayashi M (2005) Simple cryopreservation protocol with an encapsulation technique for tobacco BY-2 suspension cell cultures. Plant Biotechnology 22: 105–112. DOI: 10.5511/plantbiotechnology.22.105
- Kobayashi T, Niino T, Kobayashi M (2006) Cryopreservation of tobacco BY-2 suspension cell cultures by vitrification with encapsulation. Plant Biotechnology 23: 333–338. DOI: 10.5511/plantbiotechnology.23.333
- Menges M, Murray JAH (2004) Cryopreservation of transformed and wild-type Arabidopsis and tobacco cell suspension cultures. Plant Journal 37: 635–644. DOI: 10.1046/j.1365-313X.2003.01980.x
- Ogawa Y, Sakurai N, Oikawa A, Kai K, Morishita Y, Mori K, Moriya K, Fujii F, Aoki K, Suzuki H, Ohta D, Saito K, Shibata D (2012) High-throughput cryopreservation of plant cell cultures for functional genomics. Plant and Cell Physiology 53: 943–952. DOI: 10.1093/pcp/pcs038
- Sakai A, Kobayashi S, Oiyama I (1991) Cryopreservation of nucellar cells of navel orange (*Citrus sinensis* Osb.) by simple freezing method. Plant Science 74: 243– 248. DOI: 10.1016/0168-9452(91)90052-A
- Sakai A (1996) Cryopreservation of cultured plant cells and meristems. Plant tissue culture letters 13: 1–6. (in Japanese) 10.5511/plantbiotechnology1984.13.1
- Hirai D (2001) Studies on cryopreservation of vegetatively propagated crops by encapsulation-vitrification method. Report of Hokkaido prefectural agricultural experiment stations No. 99. (in Japanese) <u>https://agriknowledge.affrc.go.jp/RN/20106</u> 30232.pdf