protocol-cryopreservation-T87-en-1.0

# **Cryopreservation of Arabidopsis T87 suspension cell cultures**

Version 1.0 (2022.9.12)

Change history

Version 1.0 (2022.9.12)

• Released.

Experimental Plant Division RIKEN BioResource Research Center (BRC) Koyadai 3-1-1, Tsukuba, Ibaraki 305-0074 Japan FAX: +81 29 836 9053 E-mail: plant.brc@riken.jp https://epd.brc.riken.jp/en/

#### 1 Materials

## 1.1 Plant cell culture

• Arabidopsis thaliana T87 suspension cell culture<sup>1</sup>, after 5 days of subculturing<sup>2</sup>

## 1.2 Chemicals

# Cryopreservation

- A) Culture medium: Jouanneau and Péaud-Lenoël (JPL) medium, 1  $\mu M$  1-naphthaleneacetic acid (NAA)^3
- B) Encapsulation solution: medium containing 2% (w/v) sodium alginate

| Culture medium <sup>4</sup>  | 100 mL |
|------------------------------|--------|
| Sodium alginate <sup>5</sup> | 2 g    |

Dissolve by stirring under heating at about 60°C. Sterilize by autoclave.

C) 3 M CaCl<sub>2</sub> solution

| $CaCl_2 \cdot H_2O$ | 22.1 g |
|---------------------|--------|
|---------------------|--------|

50 mL

Sterilize by filtration or autoclave.

D) Gelling solution: medium containing 0.1 M CaCl<sub>2</sub>

| Culture medium, sterilized                 | 60 mL |
|--------------------------------------------|-------|
| 3 M CaCl <sub>2</sub> solution, sterilized | 2 mL  |

<sup>&</sup>lt;sup>1</sup>RIKEN BRC plant cell line documentation (rpc00008; <u>https://plant.rtc.riken.jp/resource/cell\_line/web\_docu</u> ments/cell\_lines/rpc00008.html)

<sup>&</sup>lt;sup>2</sup>Cultured cells are taken from the exponential growth phase.

<sup>&</sup>lt;sup>3</sup>RIKEN BRC plant cell line documentation (medium no. 5; <u>https://plant.rtc.riken.jp/resource/cell\_line/web\_</u> documents/media/medium\_5.html)

<sup>&</sup>lt;sup>4</sup>Sodium alginate is usually dissolve in calcium-free medium. We were able to dissolve sodium alginate in common JPL medium, because the calcium chloride concentration of the medium (0.9 mM) does not induce gelation of alginate.

<sup>&</sup>lt;sup>5</sup>Sodium alginate 300–400 (No. 190-09991, FUJIFILM Wako Pure Chemical Corporation)

- E)  $2 \times$  Medium: double-strength JPL medium, not containing sucrose
- F) Cryoprotectant solution: medium containing 2 M glycerol and 0.4 M sucrose

|                   | 300 mL |
|-------------------|--------|
| Sucrose           | 41.1 g |
| Glycerol          | 55.3 g |
| $2 \times Medium$ | 150 mL |

Adjust pH to 5.7, sterilize by autoclave.

## Regrowth

G) Dilution solution (1.2 M): medium containing 1.2 M sucrose

| 2× Medium | 150 mL  |
|-----------|---------|
| Sucrose   | 123.2 g |
|           | 300 mL  |

Adjust pH to 5.7, sterilize by autoclave.

H) Dilution solution (0.5 M): medium containing 0.5 M sucrose

| 2 	imes Medium | 150 mL |
|----------------|--------|
| Sucrose        | 51.3 g |
|                |        |

300 mL

Adjust pH to 5.7, sterilize by autoclave.

# Evaluation of cell viability

I) 10 mg mL<sup>-1</sup> Evans blue solution

| Evans blue | 100 mg |
|------------|--------|
|            | 10 mL  |

J) Staining solution: medium containing 1 mg mL $^{-1}$  Evans blue

| Culture medium                                          | 9 mL |
|---------------------------------------------------------|------|
| 10 mg mL <sup><math>-1</math></sup> Evans blue solution | 1 mL |

K) 0.2 M K-phosphate buffer, pH 7.5

| KH <sub>2</sub> PO <sub>4</sub> | 2.18 g  |
|---------------------------------|---------|
| K <sub>2</sub> HPO <sub>4</sub> | 14.62 g |

L) 50 mM K-phosphate buffer

| 0.2 M K-phosphate buffer | 50 mL  |
|--------------------------|--------|
|                          | 200 mL |

M) 0.6% (w/v) 2,3,5-Triphenyl tetrazorium chloride (TTC) solution

| TTC                      | 600 mg |
|--------------------------|--------|
| 0.2 M K-phosphate buffer | 25 mL  |
|                          |        |

100 mL

N) Ethanol, 99.5%

## 1.3 Equipment

## Cryopreservation

- Microscope
- Tall beaker, 200 mL
- Stainless sieve, diameter 5 cm, pore size 300  $\mu$ m; set on a tall beaker
- Conical tube, 15 mL
- Low-speed centrifuge
- Pipette
- Erlenmeyer flask, 200 mL
- · Pasteur pipette
- Shaker
- Cryovial, 2.0 mL, round bottom<sup>6</sup>
- Forceps

<sup>&</sup>lt;sup>6</sup>Cryo.s<sup>™</sup>, 2 mL, PP, round bottom, internal thread (Item No. 121263, Greiner Bio-One)

- Vial rack<sup>7</sup> (Figure 1)
- Laboratory freezer, -30°C
- Cane for cryovials
- Dewar flask

## Regrowth

- · Conical tube, 50 mL
- Water bath
- Shaker
- Pipette
- Forceps
- Cell culture plate, 12 well<sup>8</sup>
- Micro spatula



Figure 1: 1.5 (2) mL tube rack TR-4002 (Micro tube mixer MT-400 supplied rack; TOMY Digital Biology Co., Ltd.)

# Evaluation of cell viability

- Surgical blade
- Pipette
- Cell culture plate, 12 well
- Forceps
- Microscope slide
- Cover slip
- Microscope
- Conical tube, 15 mL
- Low-speed centrifuge
- Water bath
- Micro spatula
- Spectrophotometer

<sup>7</sup>Do not use a rack that cover the bottom of the cryovials.

<sup>8</sup>Falcon<sup>®</sup> 12 well clear flat bottom not treated multiwell cell culture plate (product #351143, Corning)

#### 2 Methods

#### 2.1 Cryopreservation

- 1. Check physiological condition of cultured cells by observing them under a microscope.<sup>9</sup>
- 2. Pass suspension cell culture through a 300-µm sieve.
- 3. Transfer suspension cell culture into a 15-mL conical tube.
- 4. Centrifuge the tube at 100  $\times g$  for 5 min.
- 5. Check volume of the pelleted cells and remove the supernatant with a pipette.
- 6. Gently suspend the pelleted cells in 1–2 volume of encapsulation solution.
- 7. Pour 60 mL of gelling solution to a 200-mL Erlenmeyer flask.
- 8. Drip the mixture of cells and encapsulation solution into the gelling solution with a Pasteur pipette<sup>10</sup>.<sup>11</sup>
- 9. Keep the beads formed from the encapsulated cells in the gelling solution with gentle shaking for 5–10 min.
- 10. Remove the gelling solution with a pipette.
- 11. Wash the beads with 10 mL of culture medium: Add culture medium, gently swirl the Erlenmeyer flask, and remove the culture medium with a pipette.
- 12. Incubate the beads in 50 mL of culture medium for 10-20 min.
- 13. Remove the culture medium and wash the beads with 10 mL of cryoprotectant solution.
- 14. Incubate the beads in 50 mL<sup>12</sup> of cryoprotectant solution at room temperature for 40 min with gentle shaking (pretreatment<sup>13</sup>).
- 15. Pour 300  $\mu$ L of the cryoprotectant solution to a 2-mL cryovial.
- 16. Transfer three beads into each cryovial with forceps.<sup>14</sup>

<sup>&</sup>lt;sup>9</sup>Good physiological condition of the cultured cells is essential for successful cryopreservation.

<sup>&</sup>lt;sup>10</sup>A disposable 2-mL pipette can be used instead of a Pasteur pipette.

<sup>&</sup>lt;sup>11</sup>The alginate gel beads about 4 mm in diameter (about 30 μL) are formed immediately after dripping.

<sup>&</sup>lt;sup>12</sup>The beads are suspended in at least 1 mL of cryoprotectant solution per bead.

 $<sup>^{13}</sup>$ The cryoprotectant pretreatment promotes tolerance of cells to cooling to  $-30^{\circ}$ C and subsequent exposure to liquid nitrogen.

 $<sup>^{14}</sup>$  Total volume of the sample is about 400  $\mu L.$ 

- 17. Place the cryovials in a rack and store them in a laboratory freezer at  $-30^{\circ}$ C for 3 h (slow prefreezing<sup>15</sup>).<sup>16</sup>
- 18. After removing the cryovials from the freezer, immediately set the cryovials to cryovial canes and immerse it in liquid nitrogen (rapid cooling<sup>17</sup>).
- 19. Store the cryovials in vapor phase of a liquid nitrogen storage tank.<sup>18</sup>

#### 2.2 Regrowth

- 1. Pour 30 mL of dilution solution (1.2 M) to a 50-mL conical tube.
- 2. Warm each cryovial in a water bath at 40°C with gentle agitation.<sup>19</sup>
- 3. After thawing, immediately remove the cryovials from the bath.
- Transfer the three beads and cryoprotectant solution in the conical tube containing dilution solution (1.2 M).<sup>20</sup>
- 5. Set the conical tube horizontally on a shaker and incubate the beads at room temperature for 15 min with gentle shaking.
- Replace the dilution solution (1.2 M) with 30 mL of dilution solution (0.5 M): Remove the dilution solution (1.2 M) with a pipette and add dilution solution (0.5 M) to the conical tube.
- 7. Incubate the beads for 15 min with gentle shaking.
- 8. Replace the dilution solution (0.5 M) with 30 mL of culture medium and incubate the beads for 15 min with gentle shaking.
- 9. Suspend three beads in 3 mL of fresh culture medium in each well of a 12-well cell culture plate.
- 10. Culture the beads at 22°C under the continuous light for 3 days with shaking at 120 rpm.

<sup>&</sup>lt;sup>15</sup>The slow prefreezing causes freeze-induced dehydration of cells.

<sup>&</sup>lt;sup>16</sup>The slow prefreezing can be achieved with simple cooling in a laboratory freezer rather than with controlledrate cooling in a programmable freezer. The cooling rate may be affected by some environmental factors, e.g., sample volume, cooling position in a freezer, and space between the cryovials.

<sup>&</sup>lt;sup>17</sup>The dehydrated cells are vitrified by rapid cooling in liquid nitrogen. The vitrified cells can be preserved safely at the temperature of liquid nitrogen (–196°C) for an indefinite length of time.

<sup>&</sup>lt;sup>18</sup>The viability of cells is checked using one cryovial before long-term storage.

<sup>&</sup>lt;sup>19</sup>In order to avoid recrystallization of the vitrified cells, it is necessary to warm the cryovial rapidly. Also it is important not to overheat.

<sup>&</sup>lt;sup>20</sup>The cryoprotectant solution is stepwisely diluted to prevent the damage caused by rapid change in osmotic pressure.

- 11. Gently crush the beads with a micro spatula to release the encapsulated cells into the culture medium.<sup>21</sup>
- 12. Culture the cell suspension for an additional 10–14 days.
- 13. Transfer the cell suspension to 80 mL of fresh culture medium in a 300-mL Erlenmeyer flask.

#### 2.3 Evaluation of cell viability

#### Evans blue staining

- 1. Cut the bead into two to four pieces.<sup>22</sup>
- 2. Soak the pieces in 1 mL of Evans blue staining solution in each well of a 12-well cell culture plate for 20 min.
- 3. Transfer the pieces to 1 mL of culture medium and incubate them for 20 min.
- 4. Place one piece of the bead on a microscope slide and gently crush with a cover slip.
- 5. Observe the cultured cells under a microscope.<sup>23</sup>

## TTC assay

- 1. Transfer 3–5 beads to a 15-mL conical tube containing 3 mL of 50 mM K-phosphate buffer.
- 2. Incubate the conical tube for 10 min.
- 3. Discard the buffer by a pipette.
- 4. Add 3 mL of 0.6% (w/v) TTC solution.
- 5. Incubate the conical tube in darkness at 22°C for 6 h.
- 6. Centrifuge the conical tube at 3,000 rpm for 1 min.
- 7. Discard TTC solution by a pipette.
- 8. Add 3 mL of 50 mM K-phosphate buffer.
- 9. Incubate the conical tube for 10 min.
- 10. Centrifuge the conical tube at 3,000 rpm for 1 min.
- 11. Discard the buffer by a pipette.

<sup>&</sup>lt;sup>21</sup>The beads must be cultured until the embedded cells proliferate vigorously.

<sup>&</sup>lt;sup>22</sup>The cell viability is determined after 1 day of culture, because we could not evaluate the viability of cells that were still recovering from cryopreservation immediately after re-warming.

<sup>&</sup>lt;sup>23</sup>Died cells are stained blue.

- 12. Crash the beads with a spatula.
- 13. Add ethanol to 3 mL.
- 14. Incubate the conical tube in a water bath at 60°C for 10 min.
- 15. Centrifuge the conical tube at 3,000 rpm for 1 min.
- 16. Measure absorbance at 485 nm using a spectrophotometer.
- 17. Calculate cell viability relative to the non-treated control.<sup>24</sup>

 $<sup>^{24}</sup>$  Prepare the following samples: 1) Non-treated beads (100%). 2) Non-treated frozen beads (0%): The cells are not alive. 3) Cryopreserved beads (Sample). The cell viability can be calculated as: (A\_{485}Sample - A\_{485}0%) / (A\_{485}100\% - A\_{485}0\%) \times 100(\%)